
505

GDT4MAS: an extension of the GDT model to specify and
to verify MultiAgent Systems

Bruno Mermet
GREYC - UMR CNRS 6072
Campus Côte de Nacre

BP 5186
14032 Caen Cedex

Bruno.Mermet@univ-lehavre.fr

Gaële Simon
GREYC - UMR CNRS 6072
Campus Côte de Nacre

BP 5186
14032 Caen Cedex

gsimon@iut.univ-lehavre.fr

ABSTRACT
The Goal Decomposition Tree model has been introduced in
2005 by Mermet et al. [9] to specify and verify the behaviour
of an agent evolving in a dynamic environment. This model
presents many interesting characteristics such as its compo-
sitional aspect and the definition of proven proof schemas
making the proof mechanism reliable. Being interested in
specifying and verifying multiagent systems, we have de-
cided to extend the GDT model for specifying Multiagent
systems. The object of this article is to present this exten-
sion. So, after a brief description of the initial GDT model,
we show how we extend it by introducing the specification
of the whole MAS. We also introduce the notions of agent
type and agent, and we show how external goals allow to
specify collaborative agents and to prove the correctness of
their collaboration. These notions are illustrated on a toy
example of the litterature.

Categories and Subject Descriptors
D.2.4 [Software engineering]: Software/Program Verifi-
cation—Theorem proving ; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—multiagent systems; D.2.2
[Software engineering]: Design tools and techniques—
GDT

Keywords
Multiagent systems, Specification, Verification, GDTs, Tem-
poral Logic

1. INTRODUCTION
Verifying computer systems is an important field of soft-

ware engineering. For a few years, several people have tried
to adapt verification techniques to the field of agent design.
Works on the verification of multiagent systems are few.
Actually, most verification techniques on agents use model-
checking. When many agents evolve concurrently in a shared
environment, the size of the problem becomes rapidly in-
tractable by exhaustive techniques such as model-checking.
Some works try to reduce the complexity by increasing the

Cite as: GDT4MAS: an extension of the GDT model to specify and
to verify MultiAgent Systems, Author(s), Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

granularity, but as a consequence, the result is no more a
proof of the correctness because many states are no longer
analysed.

The model of Goal Decomposition Trees [9] is a formal
model allowing to formally specify agents and providing
proof schemas to verify the correctness of the specification1

in a compositional way. Moreover a GDT specification can
be automatically translated into a program. The existing
version of the GDT model deals with the specification of a
small number of agents, each one with its own GDT, and
with limited proofs possibilities at the system level, and is
well-suited to be extended to the specification of multiagent
systems because, an agent specified with a GDT is situated
in an environment, and this environment can evolve inde-
pendently from the agent. Thus, we have chosen to extend
this model to specify and verify multiagent systems, and this
article presents this work.

In the next part, we briefly present the GDT model and
its main characteristics. Then, we present the extensions we
propose in order to specify and verify multiagent systems.
And finally, we illustrate this on an example.

1.1 The ERoM problem
The Robots on Mars problem (RoM problem) was first

presented in [2]. In this problem, two robots have to clean
Mars. Mars is represented by a grid. One of the robots, R2,
cannot move but can burn garbage. The other robot, R1,
can move on the grid. When it discovers a piece of garbage
in a cell C, it picks it up, brings it to R2, and then restart
its exploration of Mars from the cell C. The behaviours of
these two robots using GDTs was given in [8].

The Extended Robots on Mars (ERoM) problem is an
extension we propose where multiple R2 robots are present
on the grid. When R1 finds a piece of garbage, it brings it
to the nearest robot R2.

2. THE GDT MODEL
Here, we give a brief description of the GDT model. More

details can be found in articles presenting the model like [9].

2.1 The environment
In the GDT model, an agent is situated in an environment.

An environment is specified by a set of typed variables and
an invariant property on these variables. The value of the

1a proof schema is a rule that allows to generate proof obli-
gations that, once verified, guaranty the correctness of the
system

Cite as: GDT4MAS: an extension of the GDT model to specify and
to verify MultiAgent Systems, Bruno Mermet, Gaële Simon, Proc. of
8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. 505–512
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

506

variables of the environment can evolve independently of
the actions of the agent. However, the invariant property
is always true. The invariant property is expressed in first-
order logic, using arithmetic and set-theory operators.

2.2 Agent and Goal Decomposition Tree
In the GDT model, an agent is specified by a set of vari-

ables (internal to the agent or belonging to the environ-
ment), an invariant property, an initialisation clause of its
variables, a set of actions and a behaviour. The behaviour
is specified by a Goal Decomposition Tree.

As the goal notion is central when dealing with agents [5],
A GDT is a tree of goals, where each non-leaf goal is de-
composed, thanks to an operator, into subgoals. The root
goal is the main goal of the agent. Each goal is specified by
a name and two logical formulae:

• a Satisfaction Condition (SC): the property that is es-
tablished if the goal solving process (execution) has
succeeded;

• a Guaranted Property in case of Failure (GPF): which
is established if the goal solving process has failed.

There are two kinds of goals:
• state goals: the satisfaction condition of such goals

specify a property that should be verified by the state
reached after the success of the goal execution, for in-
stance: x > 10 ∧ y < x.

• progress goals: the satisfaction condition of such goals
express a link between the states of the agent before
and after the goal execution. In satisfaction conditions
of such goals, a primed variable x′ corresponds to the
value of the variable x after the goal execution whereas
an unprimed variable x corresponds to the value of the
same variable in the state before the execution of the
goal decomposition. An example of the satisfaction
condition of such a goal is: x′ = x+1∧y′ > y∧z′ = z.

Moreover, a goal is specified by two boolean properties
(see [9]) for details: its lazyness and its necessary satisfia-
bility. A lazy goal (L goal) is a goal whose decomposition
is executed only if its satisfaction condition is false and a
necessarily satisfiable goal (NS goal) is a goal whose decom-
position is guaranted to achieve the goal.

A goal can either be linked to an action that should achieve
it (leaf goal) or be decomposed into one or more subgoals
thanks to decomposition operators (intermediate goals). A-
mong the few operators defined by the authors, there are
nondeterministic operators (and, or), sequential operators
(seqand, seqor), and an iteration operator (iter).

Notice that rules (temporal logic formulae) are provided
with the model to allow to extend this list with new oper-
ators if necessary. A detailed description of these operators
can be found in [9].

3. EXTENSIONS TO SPECIFY MULTI-
AGENT SYSTEMS

3.1 Introduction
We first have to specify what we call a multiagent system.

Informally, a multiagent system can be defined as a tuple of
two elements: the first one is the environment, and the other
one is the population of agents. The following definition of
the environment has already be given in [8]:

definition 1. Environment An environment is a triple
E = (VE , IE , sE), where:

• VE is the set of environment variables,

• IE is the invariant of the environment,

• sE is the set of the stable properties of the environ-
ment.

In the previous version of the GDT model, agents and
GDTs were not very well distinguished. This is no more
suitable as many agents can be of the same type, defined by
the same GDT.

3.2 Agent population
When dealing with multiagent systems, a first key point

is to be able to formally describe the population of agents.
In this article, we will only consider a static population (no
birth, no death). Each agent is an instance of a type of agent
which is a key notion of multiagent systems. From the older
definition of agents in the GDT model, we give the following
definition of a type of agent:

definition 2. Agent type(temporary definition)
Let E be an environment. A type of agent T is a tuple:

(namet, Vi, VE , init, I, S, Actions, Beh))

where:
• namet is the name of the type,

• Vi is the set of internal variables,

• VE is the set of environment variables seen,

• init is the initialisation of the internal variables,

• I is the invariant property,

• S is the set of stable properties,

• Actions is the set of capabilities,

• Beh is the behaviour (namely a GDT).

notation 1. T
We introduce a constant set T which contains the types of

agents belonging to the system.

notation 2. If t = (namet, Vi, VE , init, I, S, Actions, Beh)
is a type, we will write namet(t) the name of t, Vi(t) the set
of internal variables of t, etc. More formally, we consider
that name is a function typed by name ∈ T → String, etc.

The system is made of agents. Each agent is an instance of
a type. It means that each agent has its own set of variables.
Moreover, even if agents of a given type share a common
behaviour, they may differ by the value of some constants.
For instance, in the case of the ERoM problem, two robots
R2 are on different cells, and so, their positions differ. As a
consequence, the behaviour of a type of agent will no more
be described by a GDT, but by a parameterized GDT, a
notion presented in [8]. So, an agent is specified by an
identifier, a type of agents and a list of effective parameters
for the parameterized GDT associated to the type.

definition 3. Agent An agent a is defined by a tuple
(name, type, param) where:

• name is the name of the agent;

• type is the type of the agent;

• param is the list of effective parameters for the GDT
of the type of the agent.

If a = (namea, typea, parama) is an agent, we will write
name(a) its name (namea), type(a) its type and param(a)
its list of parameters.

Bruno Mermet, Gaële Simon • GDT4MAS: an extension of the GDT model to specify and to verify MultiAgent Systems

507

notation 3. A and AT We introduce a constant called
Awhich is the set of the agents defined in the system.

Let t ∈ T be a type of agent. We write At the set of agents
of type t. Formally, At = {a.(a ∈ A ∧ type(a) = t)}.

example 1. In the case of the ERoM problem, where one
instance of R1 exists and two instances of R2 are present in
the cells (x1, y1) and (x2, y2) (where xi and yi are constants),
the agents of the system will be declared as:
A = (r1, R1, {})(r2a, R2, (x1, y1))(r2b, R2, (x2, y2))

3.3 Surface variables

3.3.1 Definition
In the previous version of the GDT model, there was two

kind of variables:

• internal variables: these variables belong to an agent
and cannot be seen by the others;

• environment variables: these variables are shared by
all the agents. So, each agent can see them but also,
each agent can modify them.

As a consequence, an agent can not have any information
on the others, whereas it is often necessary when agents
have to collaborate. So, it seemed necessary to introduce
variables that can be seen by all the agents and modified
by only one agent, the owner agent of this variable. Such
variables can be considered as follows:

• from the point of view of the owner agent, these vari-
ables can be considered as internal variables, as the
agent can perform any action on them and no other
agent can modify their values;

• from the point of view of the other agents (called in the
sequel observer agents), these variables can be partially
considered as environment variables, as their value can
be seen and can be modified by other agents (namely
by the owner agent). But contrary to environment
variables, the observer agents cannot modify their val-
ues. Notice that these variables are not environment
variables but they can be considered as environment
variables from a proof point of view.

definition 4. Surface Variable
A surface variable is an internal variable of an agent called

the owner agent. The owner agent can modify at will the
value of this variable. The other agents can see the value of
this variable but cannot modify it.

3.3.2 Representation
As surface variables have, from the point of view of the

owner agent, the same status as internal variables, they are
represented in its GDT as internal variables. However, the
definition of a type of agent is modified as follows (this new
definition replaces definition 2):

definition 5. Agent type (version 2) In addition to
the previous definition, an agent type is also specified by Vs,
the set of surface variables of this type and Vs ⊆ Vi.

A surface variable must also be seen by observer agents.
Moreover, it may be used in environment properties. So,
as each agent of a given type must have its own surface
variables, each surface variable can be represented into the
other agents by a functional variable as follows:

notation 4. External representation of a surface
variable

Let T be a type of agent and vs one of its surface variables.
We call tvs the type of this variable. This variable can be
represented in the other GDTs or in the invariant of the
environment by a pseudo-variable vsS

T ∈ AgentsT → tvs.
So, the value of vs for an agent a of type T can be expressed
in the other agents by vsS

T (a).

Notice that, as there are constants belonging to the envi-
ronment, it is also possible to declare surface constants2 .

example 2. In the RoM problem, the Robot R2 was spec-
ified by three variables: xR2

, yR2
and busy. As its position

is constant and must be known by R1, in the solution given
in [8], xR2

and yR2
were defined as environment constants,

whereas busy (specifying whether R2 is busy or not) was
specifed as an internal variable of R2.

In the extended version, Robots R2 still do not move, but
each one has its own position. So, xR2

and yR2
are now

surface constants.
Notice that we can specify the property that robots R2 are

on different cells by the following environment invariant:

(a, (x, y)) . xS
R2

(a) = x ∧ yS
R2

(a) = y ∈
AgentsR2

� (TX × TY)

where:

• TX , TY are the types of the constant xR2
, yR2;

• � is the symbol of the set theory to denote injection.

3.4 Multiagent System
From the previous considerations, we can now give a for-

mal definition of a multiagent system in our model:

definition 6. Multiagent System A multiagent sys-
tem MS is a tuple MS = (E ,T ,A) where:

• E is an environment,

• T is the set of the agent types in the system,

• A is the set of the the agents of the system.

3.5 A new specification for External Goals
In a previous paper [8], the notion of external goals was

added to the GDT model. Informally, an external goal is
a goal that an agent a1 cannot achieve and that must be
achieved by another agent a2. When a1 needs this goal to
be achieved, it waits until is has been achieved. An example
of such a goal is given in example 3.

example 3. external goal Let us consider two agents in
a university where classrooms are locked for security reasons.
The first agent, the teacher, has a course to provide in a
classroom. The second agent is the mace bearer: it has a
pass key to open classrooms. Then a subgoal of the teacher
agent is to enter into the right classroom. This subgoal is
decomposed thanks to a SeqAnd operator into two subgoals:
Unlocking the door, then opening it. So, the first subgoal is
an external goal that will be achieved by the mace bearer, the
second agent.

The formal definition of an external goal was the following:

2In this article, to reduce the length of the formulae, envi-
ronment and surface constants are not represented.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

508

definition 7. external goal (previous definition) Let
a be an agent. An external goal in the GDT of a is a NS
goal ex of the form (nameex, SCn, lnn, ea, eag)

where nameex is the name of the goal, SCn is the satis-
faction condition of the goal, lnn is the lazyness of the goal,
ea is another agent in E , and eag is an NS goal in the GDT
of ea.

This definition must first be modified as GDTs are not
more associated to agents but to agent types. But we also
want to change this definition because it violates the com-
positional aspect of the GDT model: actually, with such a
definition, a GDT with an external goal has to know the
structure of another GDT (the GDT of the agent ea). So,
we do not want to always have to precise for an external goal
which node of which agent will achieve the external goal. As
a consequence, the new definition of an external goal is the
following:

definition 8. external goal
Let a be an agent in an environment E . An external goal

in the GDT of a is a NS leaf goal with no action attached to
it and declared as being external.

Before describing the new proof procedure, we have to
recall to the reader what a leads-to property is.

definition 9. leads-to property In the temporal logic
domain, we define a leads-to property as: a leads−to b ≡
�(a → �b). In the sequel, a (respectively b) will be called the
antecedent (respectively the subsequent).

The proof procedure of external goals has also to be mod-
ified. Recall that each goal g in a GDT has a context Cg

3.
So, if ex is an external goal, with a context Cex and a satis-
faction condition SCex, we have to prove that in the system,
the following leads-to property is true:

�(Cenv
ex → �SCenv

ex)

where F env is the projection of the formula F on environ-
ment variables.

First of all, notice the following property of the Linear
Temporal Logic:

a → b, c → d

�(b → �c) 	 �(a → �d)

As a consequence, to verify that an external goal will even-
tually be achieved, it has to be shown that there exists in
the MAS an agent that satisfies a property �(b → �c) with:
Cenv

ex → b and c → SCenv
ex .

In order to maintain the compositional aspect our model,
it implies that a GDT must specify which leads-to properties
it satisfies. As GDTs are attached to types, it is in fact the
definition of Agent types (definition 5) that as to be modified
as follows:

definition 10. Agent type (version 3)
Let E an environment. A type of agent T is a tuple:

(namet, Vi, Vs, VE , init, I,L, S, Actions, Beh))

Where:
• namet is the name of the type,

• Vi is the set of internal variables,

• Vs is the set of surface variables of this type and we
have Vs ⊆ Vi.

3This context, which is automatically inferred from the
GDT structure, allows to make compositional proofs

• VE is the of environment variables seen,
• init is the initialisation of the internal variables,
• I is the invariant property,
• L is the set of leads-to properties relying on en-

vironment and surface variables,
• S is the set of stable properties,
• Actions is the set of capabilities,
• Beh is the behaviour (namely a GDT).

3.6 Proof of external goals
From the explainations above, the proof process of an ex-

ternal goal is the following:
Let ex be an external goal with a satisfaction condition

SCex and a context Cex. We have to prove, possibly by a
proof by case, that there exists in the system an agent with
a leads-to property �(b → �c) with Cex → b and c → SCex.

3.7 Proof of leads-to properties
In [8], where a goal g of an external agent ea was associ-

ated to each external goal ex, a proof procedure was given
to prove that ea was achieving SCex when required. This
proof procedure can be slightly modified to verify a leads-to
property a leads−to b of an agent ag:

1. determine the set of goals S1 of ag whose context is
compatible with a

2. determine the set of NS goals S2 of ag whose satisfac-
tion condition implies b,

3. show that the execution of each goal s of S1 leads-to
the execution of a goal of S2 and that a implies the
triggering context of th GDT.

Notice that verifying that there is not dead-lock has been
removed. Actually, this step cannot be performed on a GDT
independently of the other agents in the system. The easier
way to guarantee this essential property is to ensure that,
in the execution of the GDT, from a goal of S1 to a goal of
S2, the execution process does not depend on other agents
(with external goals). This constraint is quite strong. It can
be relaxed by introducing a verification process when the
MAS is completely defined. However, this process cannot
be presented in this paper for space reasons.

4. TOY EXAMPLE
In this section, we show how the ERoM problem can be

specified with the GDT4MAS model. We also present some
examples of new proofs due to this specification. Notice that
although formulae are given for 2 agents, they could have be
given for an unspecified number of agents.

4.1 Multiagent model
As specified in definition 6, the multiagent system is spec-

ified by three parts: (E , T ,A).

Environment.
Here, as in the RoM problem, the environment contains

the grid representing the Mars planet on which agents move.
The invariant of the environment specifies the type of the
grid and the fact that two R2 agents are on different cells.
Following the structure presented in definition 1, the envi-
ronment of the ERoM problem is the following:

E=

{G},
G ∈ Xmin..Xmax × Ymin..Ymax → {clean, dirty}

∧
(a, (x, y)) . (a, x) ∈ xS

R2
∧ (a, y) ∈ yS

R2

∈ AgentsR2
� (Xmin..Xmax × Ymin..Ymax)

,

{}

Bruno Mermet, Gaële Simon • GDT4MAS: an extension of the GDT model to specify and to verify MultiAgent Systems

509

Agent types.
Considering the agent types, we have two kinds of agents,

R1 and R2. These types are quite similar to the agents R1
and R2 of the original RoM problem, so, we let the reader
refer to [8] for more details. There are three main differences:

• the position of the R2 robots is now described by con-
stant surfaces of the R2 type

• the goal decomposition of R1 is modified has R1 has
now to bring the pieces of garbage it finds to the nearest
R2 robot.

• we have to add a leads-to property to the R2 type.
Adding surface constants to the type R2 is straightforward.
Considering the new GDT of R1 (that will be described later
in this section), the set of agent types is then the following:

T=

(R1, Vi1 , {}, VE1
, init1, {}, {}, {}, Actions1, GDT1),

R2, {busy, xR2, yR2}, {xR2, yR2}, {G}, init2, {},
{�(G(xR2, yR2) = dirty → �G(xR2, yR2) = clean)},
{}, Action2, GDT2(x, y)

In the formula above, characteristics that do not need to
be detailed in this paper are just represented by a variable
(this is for instance the case of init1, or Actions2). No-
tice that the GDT of the R2 robots is now parameterized,
allowing to specify different positions for different robots.

Agents.
As presented in the introduction, there will be only one

agent of type R1. As explained above, we will suppose in
the sequel that there are only two agents of type R2, but we
could let this number unspecified. So, the set of agents in
the system is the following:

A = (r1, R1, ()), (r2a, R2, (xa, ya)), (r2b, R2, (xb, yb))

4.2 Type R1

4.2.1 Old version with only one robot R2
The previous version of the GDT of the robot r1 is detailed

in [8]. Its graphical representation is shown on figure 1. Here
is a brief description of the GDT:

goal 1 is the main goal: it consists in having cleaned the
whole grid. It can be achieved by iterate on the following
sequence of subgoals: cleaning the current cell (goal 3) and
going to the next cell (goal 25).

To clean the current cell, if it is already cleaned, R1 just
have to record this fact (goal 4). Otherwise, R1 must pick
the piece of garbage, (goal 6), bring it to R2 (goal 11) and
go back to the cell where the piece of garbage was.

From the initial specification [2], it is said that the pick
action can fail but succeed after at most three attempts.
This is described by the subtree with goal 6 as root goal.

After having noted the current position (goal 12), bringing
the piece of garbage to R2 consists in going to R2’s cell
(goal 14) and then, when R2’s cell is empty (goal 19), drop
the piece of garbage on this cell.

Decompositions of goals 14 and 21 detail how R1 reaches
a cell by iterating on either a vertical or horizontal move.

Going to the next cell (goal 25) consists in iterating on the
subgoal 28 (if the end of the grid has not yet been reached).
Actually, subgoal 28 makes the agent moving from one cell
either horizontally or vertically. But doing so, R1 may reach
R2’s cell. That is why an iteration is necessary until R1
reaches a cell on which R2 is not.

L

L

LL

L

L

L

SeqAnd

Case

CaseSeqAnd

SeqAnd

SeqAnd

CaseSeqAnd

Case

Case

Iter

Iter

Iter

Iter

Iter

1

2

25

26

2827

29 3021

22

2423

10

5

3

4

6

7 8

9 12

14

13

11

18

19 2015

16 17

SyncSeqAndd
G(x,y)

G(x,y)
SyncSeqAnd

record
clean
cell

initialize
nb. attempts

pick posSaved’
=pos

moveH(...)

wait R2’s
cell empty

drop

moveH(...)

skip

moveV(+1) moveH(...)

...

pos!=endGrid

G(x,y)

dxR2!=0 dyR2!=0

moveV(...)

moveV(...)

dxSaved!=0 dySaved!=0

! G(x,y)

pos=endGrid

Figure 1: Old version of the GDT of robot R1

4.2.2 New version
The GDT or R1 must be modified for two reasons: refer-

ences to R2 must be modified as there is now many robots of
type R2; and the specification of R1 has changed: it has to
bring the pieces of garbage to the nearest robot of type R2.
The first modification implies to slightly modify the satis-
faction conditions of the goals of the GDT of R1, whereas
the second one requires to (partly) modify the GDT.

Modification of some Satisfaction conditions.
The set of satisfaction conditions of the GDT of R1 can

be found in [8]. We just give here a few examples:
The satisfaction condition of goal 2 was the following4 :

SC2 =

(¬busy′ ∧ (x, y)
= (xR2, yR2)
clean′ = clean ∪ {(x, y)}
clean′ = lt((x′, y′))

(¬busy′ ∧ clean′ = dom(G))

.

Informally, this satisfaction condition expresses that after
goal 2 has been achieved, the robot does not hold any object
and either it is not on the cell of the robot R2, and the
current cell is considered as clean or the whole grid is clean.

To help the reader in reading next formulae, we will use
the shortcut PosR2 (the set of positions of robots of type
R2) with the following definition:

PosR2 = {(x, y).(∃a ∈ AR2.(x
S
R2(a) = x ∧ yS

R2(a) = y))}

As GDTs are now associated to types and many agents of
a given type can be present in the system, this satisfaction
condition becomes:

SC2=

(¬busy′ ∧ (x, y) /∈PosR2}
clean′ = clean ∪ {(x, y)}
clean′ = lt((x′, y′))

(¬busy′ ∧ clean′ = dom(G))

.

4in this formula, lt(x, y) is the set of cells travelled by R1
from the beginning of the grid until the cell (x, y) and
dom(f) represents the domain of the function f .

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

510

Most satisfaction conditions referring to R2’cell have to be
modified in the same manner. For instance, the satisfaction
condition of the goal 14 (Go to R2) was:

SC14 ≡ (x, y) = (xR2, yR2) ∧ busy

and the new version should be:

SC14 ≡ (x, y) ∈ PosR2 ∧ busy

Modification of the Goal Decomposition Tree.
As specified in the introduction of this article, the robot

R1 has now to reach the nearest robot R2. Thus, in the
GDT of R1, the link between goal 13 (“go and give R2”)
and goal 14 (“go to R2”) has to be modified: whereas the
satisfaction of goal 13 is quite unchanged (its informal speci-
fication becomes “go and give to a robot of type R2”, and its
formal specification is modified as specified above), the left
child goal of its decomposition is now a new goal 13.1 (“go
to the chosen R2”). This goal is itself decomposed with a
SeqAnd operator between a goal 13.2 (“determine the near-
est robot R2”) and the old goal 14 slightly modified (its sat-
isfaction condition is now “go to the chosen R2”; the same
modification is performed for the satisfaction conditions of
all the subtree, that is to say goals 15 to 17). This decom-
position is shown on figure 2.

L
L

Case

Iter

14

15

16 17

SeqAnd

12 13

18

19 20

G(x,y)
SyncSeqAnd

posSaved’
=pos

wait R2’s
cell empty

drop

SeqAnd

11

moveH(...) moveV(...)

dxR2!=0 dyR2!=0

13.1

13.2

SeqAnd

Figure 2: Partial new version of the GDT of robot
R1

Most satisfaction conditions are given below. We will use
the dist function specified by:

dist :
AR2 → R

a → xS
R2(a) − x + yS

R2(a) − y

Moreover, nr2 will represent the nearest R2 robot of R1.

SC13 =
(x′, y′) ∈ PosR2 ∧ ¬busy′ ∧ G′(x′, y′) = dirty
(xSaved′, ySaved′) = (xSaved, ySaved)

SC13.1 =

(x′, y′) = (xR2chosen, yR2chosen)
(xR2chosen, yR2chosen) ∈ posR2
(xSaved′, ySaved′) = (xSaved, ySaved)
busy′

SC13.2 =
nr2 = choice(dist−1[{min(dist[AR2]])}])
xR2chosen = xS

R2(nr2)
yR2chosen = yS

R2(nr2)

SC14 =
(x′, y′) = (xR2chosen, yR2chosen)
busy′

SC18 =

¬busy′

G′(x′, y′) = dirty
(x′, y′) = (x, y)
(xSaved′, ySaved′) = (xSaved, ySaved)

SC19 =
busy′

G′(x, y) = clean
SC20 =

¬busy′

G′(x′, y′) = dirty

4.2.3 New Proofs
Most of the proofs that were made by the authors of

the initial version (and that can be found in [8]) can be
performed on this new version (the changes in satisfaction
conditions presented in the paragraph Modification of some
satisfaction conditions of the previous section generate only
syntactic modifications in the proofs). So, the only proofs
that has to be performed are the following:

• validity of the decomposition of the goal 13 and 13.1;
• validity of the external goal 19.

Decomposition of goal 13.
First of all, we give the simplified proof schema of the

SeqAnd operator when A is decomposed into B SeqAnd C:

LH 	 (([v′ := vtmp]SCB ∧ [v := vtmp]SCC) → SCA)

where [v := vtmp]P represents the substitution of all the
free occurences of all the variables in P by fresh variables
having the same name but superscripted by tmp and LH
(local hypotheses) summarizes the context of the goal A.

The application of this proof schema to the decomposition
of the goal 13 by goals 13.1 and 18 requires to establish the
following property:

LH 	 (([v′ := vtmp]SC13.1 ∧ [v := vtmp]SC18) → SC13)

That is to say:

LH 	

(xtmp, ytmp) = (xR2chosen, yR2chosen)
(xR2chosen, yR2chosen) ∈ posR2
(xSavedtmp, ySavedtmp) = (xSaved, ySaved)

∧
¬busy′ ∧ G′(x′, y′) = dirty
(x′, y′) = (xtmp, ytmp)
(xSaved′, ySaved′) = (xSavedtmp, ySavedtmp)

→
(x′, y′) ∈ PosR2 ∧ ¬busy′

G′(x′, y′) = dirty
(xSaved′, ySaved′) = (xSaved, ySaved)

which is true for the following reasons:
• as (x′, y′) = (xtmp, ytmp),

(xtmp, ytmp) = (xR2chosen, yR2chosen) and
(xR2chosen, yR2chosen) ∈ posR2 is in hypotheses, we
have (x′, y′) ∈ PosR2;

• ¬busy′ and G′(x′, y′) are in hypotheses;
• as (xSaved′, ySaved′) = (xSavedtmp, ySavedtmp) and

(xSavedtmp, ySavedtmp) = (xSaved, ySaved) are in
hypotheses, (xSaved′, ySaved′) = (xSaved, ySaved).

Notice that this proof does not depend on the number of
R2 robots in the system.

Bruno Mermet, Gaële Simon • GDT4MAS: an extension of the GDT model to specify and to verify MultiAgent Systems

511

Decomposition of goal 13.1.
This decomposition uses the same proof schema as the

previous one. Moreover, the proof is straightforward. So,
we decide not to present it here.

External goal 19.
The context of this goal is (x, y) ∈ posR2 ∧ busy and its

satisfaction condition is busy∧G(x, y) = clean. So, proving
the correctness of the behaviour of an agent R1 will require
to prove that in the system, an agent satisfies the following
property:

�((x, y) ∈ posR2 → �G(x, y) = clean) (1)

This property cannot be proven now because the type R2
has not yet be defined. It will be proven in section 4.4.

4.3 Type R2

4.3.1 Old Version
The old version of the GDT of those robots is a simple

GDT where the goal 1 is decomposed into 2 SeqAnd 3 with
the following satisfaction conditions and contexts:

SC1 ≡ ¬busyR2 ∧ G(xR2, yR2) = clean
SC2 ≡ busyR2 ∧ G(xR2, yR2) = clean
SC3 ≡ ¬busyR2 ∧ G(xR2, yR2) = clean
C1 ≡ ¬busyR2 ∧ G(xR2, yR2)) = dirty
C2 ≡ ¬busyR2 ∧ G(xR2, yR2)) = dirty
C3 ≡ busyR2 ∧ G(xR2, yR2)) = clean

In this version, the position of the unique robot R2 was
specified by two environment constants xR2 and yR2.

Recall the following properties of this GDT:
• its triggering context is TCR2 ≡ G(xR2, yR2) = dirty;

• its precondition is PrecR2 ≡ ¬busyR2.

4.3.2 New Version
As specified above, as we have now many agents of type

R2, and as each one has to know its own position, whereas
the agent of type R1 must know the positions of all the
robots of type R2, the positions of the robots of type R2
will be represented by surface variables.

The other parts of the type R2 have been given in sec-
tion 4.1. We just want to focus on the following changes:

• The position is specified by surface variables;

• a leads-to property is associated to the robots R2.

4.3.3 Proof
As this GDT has not been modified, proofs already per-

formed in [8] are still valid. So, the only proof remaining is
the proof of the leads-to property:

�(G(xR2, yR2) = dirty → �G(xR2, yR2) = clean)

From the proof principle presented in section 3.7, we must:

1. determine goals S1 whose context is compatible with
G(xR2, yR2) = dirty;

2. determine NS goals S2 whose satisfaction condition im-
plies G(xR2, yR2) = clean,

3. verify that when an agent is trying to achieve a goal of
S1, it will eventually try to achieve a goal of S2 (this
requires to prove that the antecedent of the leads-to
property implies the triggering context of the GDT).

In a straightforwad manner, we can compute that S1 =
{1, 2} and S2 = {1, 2, 3}.

The third step is verfied from the semantics of the SeqAnd
operator and from the fact that goal 1 and 2 are non-lazy
goal, and that they are NS goal. Moreover, as the trigger-
ing context of this GDT is TCR2 ≡ G(xR2, yR2) = dirty
and as the antecedent of the leads-to property to verify is
G(xR2, yR2) = dirty, the fact that the antecedent of the
leads-to rule must implies the triggering context is obvious.

4.4 Proof of collaboration between robots
Many proofs can be performed at the system level (we

have performed not only proven invariant properties but also
liveness properties), but for space reasons, we just present
here the proof of the fact that the external goal of R1 will
be achieved by another robot. The hypotheses are the fol-
lowing:

• the exernal goal of R1 is specified by the following
satisfaction condition and context (restricted to envi-
ronment variables or surface variables of other agents):

SC19 ≡ G(x, y) = clean (2)

C19 ≡ (x, y) ∈ posR2 (3)

• the set of R2 agents is:

AR2 = {(r2a, R2, (xa, ya)), (r2b, R2, (xb, yb))} (4)

• from the set of agents in the system and from the spec-
ification of the agents types, the two following proper-
ties stand in the system5:

�(G(xa, ya) = dirty → �(G(xa, ya) = clean)) (5)

�(G(xb, yb) = dirty → �(G(xb, yb) = clean)) (6)

Now, we have to prove that the external goal 19 of R1 will
be achieved by another agent in the system, that is to say
prove property 1.

So, if G(x,y) is already clean, the goal is achieved. Oth-
erwise, G(x, y) = dirty and, as (x, y) ∈ posR2, from equa-
tion 4, we have two cases: either (x, y) = (xa, ya) or (x, y) =
(xb, yb):

• if (x, y) = (xa, ya), then �G(x, y) = clean (property 5),

• if (x, y) = (xb, yb), then �G(x, y) = clean (property 6).

So, the external goal of agent R1 will eventually be achieved
by the system when it is required by R1.

5. COMPARISON WITH OTHER WORKS
For a few years, works dealing with the formal specifica-

tion and the verification of agents appear in the multiagent
community [1, 7, 5]. However, those on the verification of
multiagent systems are rare. The main reason is certainly
the difficulty of the problem: model-checking cannot be ap-
plied to systems with too many agents for complexity rea-
sons, and theorem proving is not easy to implement.

A first solution to this dilemma is proposed in [3], where
the authors propose to do model-checking on a finite and
small set of traces, performing so testing and not proof. If
this solution provides an intersting validation method, it

5Notice that we detail here both properties but whatever
the number of agents is, one property would be enough.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

512

does not respond to the problem of the verification of mul-
tiagent systems.

In order to be able to manage the problem, a proper lan-
guage is required. As specified by Fisher in [6], this language
must have the following characteristics:

• it must be a high level language and concise;

• it must provide to the designer few but powerful oper-
ators;

• its semantics must be intuitive;

• it must allow to specify static and dynamics aspects;

• it must not limit the designer by operational constraints
(for instance, the language must allow the designer to
implement agents doing several tasks in parallel).

A few agent languages satisfy all these properties. Our
model, for instance, does not fulfil the last point (we claim
however that it satisfies the other charcteristics). For in-
stance, the semantic of Concurrent MetateM [7] is not so
intuitive and 2APL [4] is not very concise.

An important characteristic of a language allowing to spec-
ify a multiagent system is that it must allow to formally spec-
ify... the system! Different solutions are proposed. Most of
them [7, 3] do not introduce the notion of agent type, and so
of instances. With these models, the designer must specify
a behaviour for each agent in the system. On the contrary,
2APL [4] allow to create several instances for each type of
agent, but contrary to our model, instances cannot be pa-
rameterized.

The environment is not always clearly specified. For in-
stance, within 2APL, the environment is specified by a Java
class, and so, theorem proving can not be done at the spec-
ification level. In Concurrent MetateM, the environment is
formally specified and moreover, an agent can evolve in sev-
eral environments.

When dealing with the architecture of a single agent, a few
models propose intra-agent parallelism (several concurrent
plans in 2APL for instance), a feature that the GDT4MAS
model does not propose yet.

Collaborations between agents, is not always clearly spec-
ified. This is for instance the case for TTL [3]. In MetateM,
communication via messages can be specified but messages
are implemented by environment variables, and can be so
compared with our external goals.

Considering the support of the methods, contrary to 2APL,
MetateM or TTL, we only have a prototype of software en-
vironment to handle our specifications.

A last comparison item is the proof capacity of the method.
As explained above, TTL does not allow to make a real
proof. Within 2APL, a large part of the system is written
in Java, and so, only model-checking on the final system can
then be done, and can only be performed on very small sys-
tems. Considering MetateM, which allows to make proof, no
compositional proof system is specified and so, the proof can
only be performed on the whole system, which leads rapidly
to proofs untractable by existing theorem provers.

6. CONCLUSION
In this article, we have shown how the GDT model can be

extended to specify multiagent systems. The key point of
this extension is the fact that it preserves the compositional
aspect of GDTs. As specified by Fisher in [6], this aspect
is essential to verify multiagent systems: “the work on com-
positional temporal specification and verification will have

some bearing on our ability to effectively verify large multi-
agent systems”. We have also shown on a small example that
the GDT4MAS model can be applied and that it allows to
manage proofs at the system level in a compositional way,
a characteristic that is not implemented by the other proof
systems we have read about. However, a few features of
these other proof systems could be added to our model, and
we will focus on this in the future: expressing true commu-
nications and parallelism inside the specification of an agent
are two examples. As well, a better software support would
be interesting. Further research dealing with the dynamicity
of the agents population should also be considered as well as
a structuration of the agents population as in MetateM [7].

7. REFERENCES
[1] N. Alechina, M. Dastani, B. Logan, and J.-J. C. Meyer.

A Logic of Agent Programs. In Proceedings of the
Twenty-Second AAAI Conference on Artificial
Intelligence, pages 795–800. AAAI Press, 2007.

[2] R. Bordini, M. Fisher, C. Pardavila, and
M. Wooldridge. Model-checking AgentSpeak. In
AAMAS-03, Melbourne, Australia, 2003.

[3] T. Bosse, C. Jonker, L. van der Meij L.,
A. Sharpanskykh, and J. Treur. Specification and
verification of dynamics in agent models. International
Journal of Cooperative Information Systems, to appear.

[4] M. Dastani. 2APL: a practical agent programming
language. Autonomous Agents and Multi-Agent
Systems, 16(3):214–248, 2008.

[5] F. de Boer, K. Hindriks, W. van der Hoek, and J.-J.
Meyer. Agent Programming with Declarative Goals. In
7th International Workshop on Intelligent Agents.
Agent Theories Architectures and Language, pages
228–243, 2000.

[6] M. Fisher. Representing and Executing Agent-Based
Systems. In M. Wooldridge and N. R. Jennings, editors,
Intelligent Agents, ECAI-94 Workshop on Agent
Theories, Architectures, and Languages, volume 890 of
LNCS, pages 307–323. Springer, 1994.

[7] M. Fisher. MetateM: the story so far. In Programming
Multi-Agent Systems, Third International Workshop,
ProMAS 2005, volume 3862 of LNCS, pages 3–22.
Springer, 2005.

[8] B. Mermet, G. Simon, B. Zanuttini, and A. Saval.
Specifying and verifying a mas: The robots on mars
case study. In M. Dastani, A. El-Fallah, A. Ricci, and
M. Winikoff, editors, Programming Multi-Agent
Systems, 5th International Workshop, ProMAS 2007,
volume 4908 of LNAI, pages 172–189. Springer, 2008.

[9] G. Simon, B. Mermet, and D. Fournier. Goal
Decomposition Tree: An agent model to generate a
validated agent behaviour. In M. Baldoni, U. Endriss,
A. Omicini, and P. Torroni, editors, Declarative Agent
Languages and Technologies III: Third International
Workshop, DALT 2005, volume 3904 of LNCS, pages
124–140. Springer Verlag, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

